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Abstract
The temperature- and pressure-induced structural phase transition in PbTiO3 is
studied with the isoenthalpic–isobaric molecular-dynamics method, using an
effective two-body interaction potential. The tetragonal to cubic transformation
is successfully reproduced with both temperature and pressure. The behaviour
of lattice parameters, vibrational density of states, and phonon anharmonicity
with temperature and pressure are in very good agreement with experimental
data. Two- and three-body correlations were analysed through pair distribution
functions, coordination numbers and bond-angle distributions.

1. Introduction

The ABO3-type perovskites (A = Ba, Ca, Pb, Sr and B = Ti, Zr) form one of the most
important class of ferroelectric materials with nonlinear electro-optical properties, and they
can be employed in several applications in electronic technology [1]. The majority of these
materials shows a paraelectric to ferroelectric temperature- and/or hydrostatic pressure-induced
phase transition. In particular, PbTiO3 (PT) shows the cubic-paraelectric to tetragonal-
ferroelectric phase transition at about 770 K at atmospheric pressure and at about 12 GPa
at room temperature; these results were obtained experimentally [2–4]. In the ferroelectric
phase, it has a large tetragonal distortion (thus the parameters associated with the polar
phase, such as spontaneous polarization and ionic shifts, are considerably large), high Curie
temperature and a wide temperature range in which the tetragonal phase is stable [5]. It
is also known that the temperature of the phase transition decreases with increasing the
hydrostatic pressure [6, 7]. Despite its scientific and technological importance, few theoretical
and computational simulations can be found in the literature. Only papers using mainly density
functional theory for lattice dynamics and electronic band structure studies can be found [8].
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In this paper, we point out that isoenthalpic–isobaric molecular dynamics (MD)
simulations give a stable tetragonal phase for the low pressure and temperature range and can
describe the temperature- and pressure-induced structural tetragonal to cubic phase transition
in lead titanate. Furthermore, dynamical properties such as the vibrational density of states,
temperature and pressure phonon anharmonicity, and dynamical Debye–Waller factor are
simulated or predicted.

2. Interaction potential and molecular dynamics calculation

The literature presents a large variety of empirical interaction potentials that describe materials
from elemental semiconductors to more complex systems [9, 10]. The potential chosen by
us was one proposed by Vashishta and Rahman, which has been used successfully for many
different systems for about 30 years [11–17]. The total interaction potential is:

� =
N∑

i≺ j

[
Hαβ

r
ηαβ

i j

+
Zαβe−r/λ

ri j
− Dαβe−r/ξ

2r4
i j

− Wαβ

r6
i j

]
, (1)

where N is the number of atoms, ri j = |�ri j |, �ri j = �ri − �r j , and �ri is the position of the
i th atom. α and β denote the atomic species. The first term represents steric repulsion (with
parameters Hαβ and ηαβ), the second is the Coulomb interaction, the third is the charge-induced
dipole interaction due to the large electronic polarizability of ions, and the last is the van der
Waals (dipole–dipole) type interaction. The screenings in the Coulomb and charge–dipole
interactions are introduced in order to avoid the long-range calculations of these interactions.
The range of the screening was fixed respectively atλ = 0.50 nm and ξ = 0.35 nm, and the two-
body potential is truncated at rc = 0.9 nm. The interaction potential for r < rc is shifted in the
usual way [22], in order to ensure that the potential and its first derivative have continuous values
at the cut-off length. From other simulations using this type of potential we took the exponents
ηPbPb, ηPbTi, ηPbO, ηTiTi, ηTiO, and ηOO to be 11, 9, 7, 11, 9, and 7 respectively [12, 17]. The
effective charges Zα were obtained from first principles (density functional theory) electronic
structure calculations by E Orhan (private communication). A detailed discussion of the
application of this model for SrTiO3 can be found in [18, 19]. The remaining constants were
optimized from the elastic constant, bulk modulus, and melting/decomposition temperature
and the lattice stability in room conditions. It is worth mentioning that there are several type
of potentials that are well able to describe a given material. In the particular case of the ABO3

perovskites, Akhtar et al [20] (for SrTiO3) and Lewis et al [21] (for BaTiO3) obtained good
results using full ionic charges.

The simulations were performed in the isoenthalpic–isobaric ensemble due to Parrinello
and Rahman, which allows the simulation box to change in size and shape [23], as well the
as micro-canonical ensemble. The system consists of 1715 particles (343 Pb, 343 Ti, and
1029 O) initially arranged in a tetragonal perovskite structure at the actual density of PT, with
zero external pressure. The system was generated at 100 K and studied in two ways. In one
way the pressure was kept at zero GPa and the system was stepwise heated to a temperature
of 2000 K. The temperature was allowed to fluctuate 1% by scaling the velocity of particles
every time step. In the other study, at a temperature of 300 K the external pressure was raised
at a rate of 0.5 GPa per 50 000 time steps (one time step is 2.29 fs) up to 12 GPa. In both
cases averages were taken over an additional 20 000 time steps to obtain two- and three-body
correlation functions such as the pair distribution function, coordination number and bond-
angle distributions.

The phase space trajectory obtained from the MD simulation allows us to determine the
pair distribution function (PDF), which furnishes the bond distance between pairs of atoms.
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From the PDF we can also obtained the temperature dependence of the atomic oscillation
amplitude �x for the atoms and consequently the dynamical Debye–Waller factor [24],

D(T ) = exp[−2M(T )] = exp

[−4π2(�x)2

3d2

]
, (2)

where d is the lattice spacing for the planes giving rise to the reflection under consideration.
The vibrational density of states G(ω) can be obtained from the Fourier transform of the

velocity–velocity correlation function Zα(t) [22]:

Gα(ω) = 6Nα

π

∫ ∞

0
Zα(t) cos(ωt) dt, (3)

with Zα(t) defined as

Zα(t) = 〈viα(0) · viα(t)〉
〈viα(0)2〉 , (4)

where viα(t) is the velocity of particle i of type α at time t , and 〈 〉 denotes an ensemble average
over all particles of type α. From the resulting MD simulations we can obtain the temperature
and pressure dependence of the maxima of the vibrational density of states, that is the phonon
anharmonicity. A linear approximation gives the pressure frequency coefficient (∂ω/∂ P)T

and the temperature frequency coefficient (∂ω/∂T )P , related by
(

∂ω

∂T

)

P

=
(

∂ω

∂T

)

V

− γ B

(
∂ω

∂ P

)

T

(5)

where the first term on the right-hand side denotes the self-energy shift, the second term the
purely volume-dependent part, γ is the volumetric thermal expansion coefficient and B the
bulk modulus.

3. Results and discussion

The set of experimental values reported in the literature [25, 26] which were used as a guide
for determining the parameters in the interaction potential (equation (1)) is displayed in table 1
along with the results of the MD simulation, obtained at 100 K. This interaction potential
provides stable perovskite structures (tetragonal and cubic) for all temperatures and pressures
studied. Once the results from the simulations reproduce the experimental values and structure
well, the potential parameters (see table 2) are fixed to simulate all other properties.

3.1. Structural analysis: temperature effect

The tetragonal to cubic structural phase transition induced by temperature is shown in
figure 1, where the lattice parameters are displayed as a function of T/Tc, together with
experimental data [3, 27]. The lattice parameters converge to the same value, showing
a jump at approximately 1100 K, indicating the phase transition. The high value of the
simulated Tc compared with the experimental one can be attributed to the periodic boundary
conditions imposed on the system in the simulation method. In the low temperature range
the simulation reproduces the lattice contraction well, leading to a negative volumetric
thermal expansion, as observed experimentally [3, 25, 28, 29]. A linear approximation
in the low simulation temperature range, from 10 to 100 K, furnishes the linear thermal
expansion coefficients αc ∼ −8 × 10−5 K−1 and αa = αb ∼ 4 × 10−5 K−1, giving a
small volumetric expansion coefficient γ ∼ −0.1 × 10−5 K−1, coherent with experimental
results that show a zero crossing at 300 K [3]. However, in the high temperature range, still
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Figure 1. The temperature evolution of the lattice parameters, showing the structural tetragonal to
cubic phase transition. The solid circles are MD simulations and the open symbols are experimental
data [3, 27]. The dotted lines are visual guides.

Table 1. Experimental and MD values of the lattice parameter, elastic constants, bulk modulus,
and melting/decomposition temperature of PbTiO3.

Experiments [25, 26] Molecular dynamics

Lattice parameters (Å)
a 3.895 3.904
c 4.171 4.153
Elastic constants (GPa)
C11 237 ± 3 293.4
C33 60 ± 10 96.8
C44 69 ± 1 90
C66 104 ± 1 95.6
C12 90 ± 5 95.0
C13 70 ± 10 81.9
Bulk modulus (GPa) 110.44 135
Melting/decomposition temperature (K) 1300 2000 ± 50

in the tetragonal phase, approaching Tc, the simulation gives a lattice expansion, contrary to
the experimental behaviour. For the cubic phase, the thermal expansion coefficients show an
isotropy in which αa , αb, and αc ∼ 4 × 10−5 K−1, in good agreement with experimental data
(αa = αb = αc ∼ 6 × 10−5 K−1) [3].

Additional information of the structural phase transition can be obtained from the
temperature variation of the pair distribution function, shown in figure 2, which gives the
bond-length distance and the coordination number between two Pb atoms. For temperatures
lower than Tc, the Pb–Pb bond distance and coordination number display two different values,
characteristic of the tetragonal phase. After the transition, there is just one bond distance and
coordination number, typical of cubic symmetry. The dotted lines are Gaussian fittings that
make clear the two bond distances in the tetragonal phase. For intermediate temperature this
analysis is fundamental once the distances are hidden by thermal agitation. From the full width
of the two first peaks, the atomic oscillation amplitude �x and its temperature dependence
were obtained, as displayed in figure 3. From a linear fit approximation, the temperature
coefficient for (�x)2 was obtained: (∂(�x)2/∂T ) = 1.5 × 10−6 nm2 K−1 for the first peak
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Figure 2. The Pb–Pb pair distribution function gPb−Pb(r) (left) and coordination number CPb−Pb(r)
(right) at zero pressure at (a) 60 K, (b) 100 K, (c) 500 K, and (d) 1100 K. At 500 K the system is
still tetragonal but the thermal agitation broadens the PDF peaks.

(vibration along a- and b-axis) and (∂(�x)2/∂T ) = 1.8 × 10−6 nm2 K−1 for the second peak
(c-axis). These results, with equation (5), can be used to predict the temperature dependence
of the Debye–Waller factor.

The temperature effect on the structural symmetry was also analysed through three-body
correlation. In figure 4 we show the Pb–O–Pb bond-angle distribution for three different
temperatures. Due to thermal agitation the peaks are superposed at high temperatures, being
better seen by fitting Gaussians (dotted lines in the figure). As the temperature increases, the
three peaks characteristic of the tetragonal phase evolute to 90◦, which is typical of the cubic
perovskite structure.
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Figure 3. The temperature dependence of (�x)2 for the first (full circles) and second (open circles)
peaks in gPb−Pb(r). Linear fits, continuous line for the former and dashed line for the latter, gave
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Figure 4. Pb–O–Pb bond-angle distributions at zero pressure for three different temperatures. At
10 K the presence of angles distinct from 90◦ characterizing the tetragonal structure can be seen.
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Figure 5. The Pb–Pb pair distribution function gPb−Pb(r) (left) and coordination number CPb−Pb(r)
(right) around Pb atoms at 100 K at (a) 0 GPa, (b) 0.8 GPa, and (c) 5.0 GPa where the transition
occurs.

3.2. Structural analysis: pressure effect

Figure 5 shows the evolution of the Pb–Pb PDF and coordination number for three different
pressures at 100 K; the tetragonal to cubic phase transition is very well reproduced. To obtain
the lattice parameters, we performed Gaussian fittings (dotted lines) since the two peaks are
superposed due to the thermal agitation, mainly for temperatures and/or pressures near the
transition value. The lattice parameter dependence on the hydrostatic pressure at 100, 200
and 300 K is displayed in figure 6, together with experimental data taken at 462, 538 and
623 K. The lowering of the transition pressure value with increasing temperature is well
described, showing a very good agreement. A linear fit in the range up to 2.0 GPa at 100 K
furnishes da/dP = 10×10−3 Å GPa−1 and dc/dP = −8×10−2 Å GPa−1, in agreement with
experimental results at room temperature: ∼2 × 10−3 Å GPa−1 and ∼−6 × 10−2 Å GPa−1,
respectively [30]. The pressure-induced phase transition is also well described from the bond-
angle distribution as we can see in figure 7, which shows the distinct bond angles of the
tetragonal phase which evolute to 90◦ of the cubic phase by applying hydrostatic pressure.
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Figure 6. Simulated and measured evolution of lattice parameters with pressure at different
temperatures. (a) Simulation data and (b) experimental data. The data were arranged to give
an idea of the phase diagram.

Table 2. Parameters used in the interaction potential of equation (1) for PbTiO3 (energy in ergs
and distances in nanometres).

Pb–Pb Pb–Ti Pb–O Ti–Ti Ti–O O–O

Hαβ 1.0378 × 10−7 1.4943 × 10−9 6.3421 × 10−10 7.2681 × 10−10 4.8635 × 10−10 4.6120 × 10−10

Zαβ 1.025e2 2.2995e2 −1.134e2 4.7961e2 −2.3652e2 1.1664e2

Dαβ 1.764e2 2.0696e2 1.2474e2 0.9592e2 0.9461e2 0.6998e2

Wαβ 7.39 × 10−12 7.39 × 10−12 7.39 × 10−12 7.39 × 10−12 4.39 × 10−12 7.39 × 10−12

ηαβ 11 9 7 11 9 7
λ = 0.50 nm ξ = 0.35 nm rcut = 0.9 nm e = electron charge

3.3. Dynamical analysis

The vibrational density of states G(ω) obtained by the MD simulation is displayed in figure 8
with the theoretical dispersion curve (whose projection on the horizontal axis reflects the
vibrational density of states) obtained by using the rigid ion model [31] and the Raman spectrum
at room temperature [32]. The results obtained from MD fit both theoretical and experimental
results very well, reproducing correctly the frequencies of the acoustic and optical bands. The
small shifts in the absolute value of the frequencies may be attributed to the effects of the size
of the simulation box and to temperature and pressure effects.
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Figure 7. Pb–O–Pb bond angles at 100 K. At 0 GPa the presence of angles distinct from 90◦
characterizing the tetragonal structure can be seen.

The temperature effect on G(ω), that is, the anharmonic effect, is shown in figure 9, which
displays G(ω) for three different temperatures. The results from the MD simulations can be
seen in figure 10, which shows the temperature dependence of the eight principal maxima
of G(ω), along with the experimental data from Raman scattering [33]. Although Raman
scattering samples only phonons at the centre of the Brillouin zone, the general behaviour,
such as the ‘softening’ and the broadening of some peaks, normally expected for the majority
of materials, is correctly reproduced. The evolution of the ‘soft mode’ cannot be studied from
our MD results since it is masked by the acoustical band. From a linear approximation the
temperature frequency coefficients (∂ω/∂T )P for each maximum of G(ω) were obtained, and
they are displayed in table 3.

Figure 11 shows the evolution of G(ω) at 300 K, for three different pressures, revealing
the ‘hardening’ of the vibrational modes, normally observed for the majority of materials.
Figure 12 shows the pressure dependence of the eight maxima of G(ω) and the experimental
results from Raman scattering [4], showing that the general behaviour is correctly reproduced
by the MD simulation. Again we can obtain the pressure frequency coefficients (∂ω/∂ P)T

for each maximum of G(ω) from linear approximation. From the simulated values of the



5780 S C Costa et al

0 200 400 600 800
E (cm–1)

ar
bi

tr
ar

y 
un

it
s

(a)

(b)

(c)

Figure 8. (a) Vibrational density of states, G(ω), from the molecular dynamics simulation at
0 GPa and 300 K. (b) Phonon dispersion curve whose projection on the horizontal axis reflects the
vibrational density of states [31]. (c) Raman spectrum [32].

Table 3. Calculated temperature frequency coefficients of the eight maxima of the vibrational
density of states of PbTiO3.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

ω (cm−1) 110 250 320 380 480 640 775 865(
∂ω

∂T

)

P
(cm K−1) −0.004 0.003 −0.016 0.001 −0.019 −0.028 −0.012 −0.033

(
∂ω

∂ P

)

T
(cm GPa−1) 1.2 0.3 −0.7 0.4 2.1 6.6 3.1 10.9

(
∂ω

∂T

)

V
(cm K−1) −0.08 0.02 −0.04 −0.29 −0.17 −0.52 −0.24 −0.84

coefficients (∂ω/∂T )P , (∂ω/∂ P)T , the experimental thermal expansion [27] γ = −6.75 ×
10−4 K−1, and bulk modulus B = 110 GPa, the coefficient (∂ω/∂T )V was calculated using
equation (5). All values of these coefficients are collected in table 3.
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Figure 9. Temperature dependence of G(ω) from MD simulation at (a) 300 K (b) 600 K (c) 900 K.
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Figure 10. Experimental and simulated temperature dependence of the frequency modes. The
dotted lines are from experimental data [33] and full symbols are from MD simulations.

4. Conclusions

Summarizing, we have performed a Parrinello–Rahman molecular dynamics simulation for
the structural and dynamical properties of lead titanate, using an effective potential which
takes into account two-body interactions. From the pair distribution function and bond-
angle distribution, structural properties such as crystal symmetry and coordination number
were obtained, in excellent accord with the experimental data. The two polymorphic phases
were correctly described and the corresponding phase transition as a function of hydrostatic
pressure and temperature was also simulated, showing that the proposed interatomic potential
is able to describe the tetragonal to cubic phase transition of PbTiO3. From the temperature
dependence of the full width of the pair distribution function the atomic amplitude oscillation
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Figure 11. Pressure dependence of G(ω) from MD simulation at (a) 0 GPa (b) 2.3 GPa (c) 5.5 GPa.
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Figure 12. Experimental and simulated pressure dependence of the frequency modes. The dotted
lines are from experimental data [4] and full symbols are from MD simulations.

was obtained, which permits us to predict the temperature dependence of the Debye–Waller
factor, an important parameter that reflects the configurational disorder. From the temperature
variation of the simulation box sides the linear thermal expansion coefficients of the tetragonal
phase for each of the three crystalline axes were determined, revealing a strong anisotropy
along the polar tetragonal c-axis. Although the numerical value of the volumetric expansion
obtained from the simulation disagrees with the experimental one, the general behaviour such
as negative volumetric thermal expansion was correctly reproduced for low temperatures. In
addition, the pressure and temperature dependence of the vibrational density of states (phonon
anharmonicity) was also correctly described, showing a coherent behaviour if compared with
experimental data from Raman scattering. Finally, the pressure and temperature frequency
coefficients were determined, including the self-energy term.
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